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Key Points: 12 

 • We present a data-driven approach for predicting channel geometry using a machine 13 

learning (ML) method. 14 

 • ML predictors include National Water Model flow statistics and a suite of landscape 15 

characteristics.  16 

 • Our method exceeds the goodness of fit of its predecessors evaluated across regions of 17 

the United States.  18 

Abstract  19 

Knowledge of bankfull hydraulic geometry represents an essential requirement for 20 

various applications, including accurate flood prediction, hydrological routing, river behavior 21 

analysis, river management and engineering practices, water resource management, and beyond. 22 
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Our work builds upon an extensive body of literature about estimating bankfull top-width and 23 

depth at ungauged locations to enhance the understanding of observable factors that affect these 24 

parameters. Using more than 200,000 USGS Acoustic Doppler Current Profiler (ADCP) records, 25 

we developed a method employing machine learning (ML) using discharge estimates and 26 

landscape characteristics from sources, including the National Water Model (NWM), the 27 

National Hydrologic Geospatial Fabric network (NHGF), the EPA stream characteristic dataset 28 

(StreamCat), and an array of satellite and reanalysis data products. Our method achieved R2=0.79 29 

predicting bankfull depth (R2=0.84 for in-channel conditions) and R2=0.81 predicting bankfull 30 

top-width (R2=0.8 for in-channel conditions) in the testing dataset. The depth predictions showed 31 

high skill in plateau regions and low skill in mountainous regions. Our analysis demonstrates the 32 

benefit of data-driven modeling in contrast to other global scaling-based or regional statistical 33 

methods. In summary, our study illustrates how top-width and depth can be better predicted 34 

using ML, reanalysis streamflow simulations, hydrographic networks, and summarized 35 

geospatial data. 36 
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Plain language summary 42 

Accurately estimating (or generalizing) key characteristics of river channels, such as their top-43 

width and depth, is valuable for tasks like predicting water flow, modeling water-related 44 

processes, and mapping flooded areas. Our research builds on existing studies that focus on 45 

estimating these important channel characteristics and aims to further develop knowledge and 46 

skills in predicting these channel characteristics. In this work, we use over 200,000 historical 47 

measurements of channel top-width and depth to develop a machine learning (ML) model to 48 

estimate channel top-width and depth. The model uses widely available information from the 49 

National Water Model (NWM) discharge and other datasets that represent land surface 50 

characteristics, climate, hydrographic connectivity, and human-related structures. The developed 51 

model performs well compared to other global, regional, and ML-based methods in the literature 52 

within the Continental United States. Validation of the models across different regions indicated 53 



better performance in flatter regions and lower performance in steeper areas. In conclusion, the 54 

study highlights the advantages of using ML techniques to estimate channel geometry more 55 

accurately, paving the way for improved predictions in unmeasured channels. 56 

Introduction 57 

The use of accurate estimates of channel bankfull depth and top-width improves  channel 58 

flow routing models (Bindas et al., 2024; Brackins et al., 2021a; Getirana et al., 2013; Han et al., 59 

2020). These dimensions inform generalized cross-sections in large-scale models, and their 60 

adequacy can influence hydrological forecasting (Brackins et al., 2021b; Brakenridge et al., 2012; 61 

Cohen et al., 2019; Heldmyer et al., 2022) and products that rely on them, like flood map 62 

generation (Alfieri et al., 2018; Cohen et al., 2018; Johnson et al., 2019). 63 

Apart from large-scale modeling, precise estimates of bankfull depth and top-width 64 

improve flood risk analysis and mapping. These accurate estimations act as a proxy, enhancing the 65 

representation of channel volume below standard DEM elevations. (Bates & De Roo, 2000; 66 

Sichangi et al., 2018; Yamazaki et al., 2009). 67 

The interest in estimating bankfull depths and top-widths has a long history in academic 68 

literature. To date, there have been efforts to present global equations that establish a relation 69 

between discharge and bankfull top-width or depth following the geomorphic relation proposed 70 

by Leopold and Maddock (1953). One of the earliest of these efforts was proposed by Moody and 71 

Troutman (2002) for global channels (Eqs. 1 and 2). 72 

𝑤 =  7.2𝑄0.5±0.02 (1) 

 73 



𝑑 =  0.27𝑄0.3±0.01 (2) 

where w and d are bankfull top-width and depth, respectively, and Q is the discharge.  74 

Frasson et al. (2019) proposed an alternative drainage area relation to estimate channel 75 

top-width, hypothesizing and affirming that channel top-width is directly associated with 76 

catchment area and channel meander wavelength. They aimed to regionalize the above-77 

mentioned global relations by using the Q/A ratio, where A represents the total drainage area and 78 

Q is discharge obtained from the Global Runoff Data Center (GRDC). This approach resulted in 79 

a global dataset (based on HydroBASIN; Lehner & Grill, 2013) of estimates for bankfull top-80 

width and depth. They subsequently conducted a comparison of these estimates with a set of 81 

bankfull top-width records derived from Landsat data. However, these equations are limited to 82 

channel reaches below 60°N and top-width greater than the 30m resolution of Landsat scenes. In 83 

their validation, they found errors ranging from 8 to 62%. Other researchers have used these 84 

equations to compute bankfull estimates of channel top-width and depth to support routing 85 

attributes in land surface models (Han et al., 2020; Schumann et al., 2013). 86 

Bieger et al. (2015) proposed regional equations based on regression for different 87 

physiographic divisions across the United States and found that annual precipitation and 88 

temperature provide additional information that improves channel top-width and depth 89 

predictions considerably. A subsequent study by Blackburn‐Lynch et al. (2017) developed 90 

regional relations for all Hydrologic Landscape Regions (HLR) and physiographic provinces and 91 

reported higher goodness of fit (GOF) of the discharge-based relations in comparison to drainage 92 

area-based relations. These estimates were used in the development and deployment of WRF-93 

Hydro and its implementation as the NOAA National Water Model. Recently, Neal et al. (2021) 94 



addressed the challenge of missing channel bathymetry more explicitly by demonstrating that 95 

improved bed estimations derived from the simplified, gradually varied flow method 96 

significantly influenced the dynamics of floodplain inundation and storage during minor flood 97 

events. 98 

ML models provide a superior alternative to simple regression models by efficiently 99 

learning from multidimensional and complex data, capturing non-linear relationships, and 100 

adapting to diverse feature types (Shen, 2018). ML models tailored for learning specific 101 

hydraulic or hydrologic variables, like channel dimensions, can be trained effectively using 102 

hydrographic datasets such as the National Hydrography Dataset (McKay et al., 2012), the 103 

National Hydrographic Geospatial Fabric (Blodgett et al., 2023; Bock et al., 2022) and its 104 

derived products (Johnson, 2022), Multi-Error-Removed Improved-Terrain (MERIT) Hydro (Dai 105 

Yamazaki et al., 2019), or the Surface Water and Ocean Topography (SWOT) Mission River 106 

Database (SWORD; Altenau et al., 2021), to name a few. Estimating channel characteristics on 107 

networks such as these provides a means to support a range of hydroscience use cases. In 2023, 108 

machine learning applications were introduced by Doyle et al. (2023), which further refined 109 

channel top-width and depth estimates within the United States. They achieved these refined 110 

estimates by using a random forest model parameterized with the Watershed (Ws) summaries 111 

sourced from the EPA StreamCat attributes (Hill et al., 2016). Their method demonstrated the 112 

value of using watershed-based predictors to estimate channel dimensions. However, when using 113 

a large suite of 96 predictors, high dimensionality (referred to as the 'curse of dimensionality'; 114 

Köppen, 2000) and high correlation between variables, such as population and housing density 115 

(~ 100%), create collinear predictors within the model, impairing its interpretability post-training 116 

(Chan et al., 2022), and make it less extensible. These challenges can lead to model confusion 117 



and a distorted representation of the actual responses, even in ML algorithms such as random 118 

forest methods (Ghahremanloo et al., 2021). 119 

Aside from statistical and ML predictions, remote sensing is an alternative solution to 120 

estimate channel dimensions. There have been numerous studies of automated channel top-width 121 

extraction using satellite imagery (Durand et al., 2009; Golly & Turowski, 2017; Monegaglia et al., 122 

2018; Pavelsky & Smith, 2008; Schwenk et al., 2017). In 2017, Isikdogan et al. (2017) developed 123 

the RivaMap software that automates the extraction of continental-scale river centerline and top-124 

width for North American rivers using Landsat imagery, and more recently, the RivWidthCloud 125 

software using cloud computing (Google Earth Engine) to extract channel top-widths from a vast 126 

archive of Landsat imagery (Yang et al., 2019). Global Surface Water Explorer (Pekel et al., 2016) 127 

does not provide direct information about channel top-width, but its historical probability map of 128 

water occurrence can be used to distinguish riparian floodplain top-width, bankfull top-width, and 129 

in-channel top-width.  130 

Concerning channel depth, satellites like ENVISAT and JASON can provide information 131 

on water surface elevation through altimeter measurements (Kouraev et al., 2004). The recently 132 

launched Surface Water and Ocean Topography (SWOT) satellite shows potential for improving 133 

space-based estimates of channel discharge globally (Durand et al., 2020; Emery et al., 2016). 134 

SWOT capability to measure water surface elevation can be used to capture variations in channel 135 

depth that cannot be directly measured from other remote sensing products such as MODIS, 136 

Landsat, and Sentinel products (Pavelsky et al., 2014). The major constraints on all remote sensing 137 

approaches are (1) the spatial resolution of the data, (2) the quality of the data (e.g., scan lines and 138 

cloud cover), and (3) the computational costs associated with image processing at regional to 139 

continental domains. In the case of (1) the 30-meter resolution of Landsat products and algorithms 140 



limit estimation to channels greater than 50 m in top-width at the time of imaging (Andreadis et 141 

al., 2013). Likewise, changes in water surface elevation are constrained by the 50 m resolution of 142 

SWOT, limiting the observable channels to those with top-widths exceeding 100 meters. (Baratelli 143 

et al., 2018). While these estimates are critical for the major river systems, supplementary 144 

information about the tributary systems that feed them is needed for a wide range of engineering, 145 

modeling, and design purposes. 146 

In this research, we test the hypothesis that a meta-learning (ensemble ML) methodology 147 

informed by National Water Model (NWM) simulated flow characteristics (such as 100-0.1% 148 

annual exceedance probability discharges) and a suite of land surface and climate variables can 149 

predict bankfull top-width and depth with GOF equal to or better than previous methods. We 150 

hypothesize that the incorporation of NWM simulated flow characteristics and a suite of land 151 

surface and climate variables can significantly improve bankfull top-width and depth predictive 152 

capability. The rest of the paper is as follows: the methods section will describe the input data 153 

used and the model training procedure. The results will discuss the model outputs in relation to 154 

the observed data as well as existing global and regional curves and ML approaches. The 155 

discussion will highlight areas for improvement, applications of this dataset, and the advantages 156 

of taking a hydrofabric-centric approach grounded in evolving federal and international efforts. 157 



2. Methods 158 

2.1. Data 159 

2.1.1 Observations 160 

In this study, we use the HYDRoacoustic dataset in support of Surface Water Oceanographic 161 

Topography (HYDRoSWOT; Bjerklie et al., 2020; Canova et al., 2016). This dataset is 162 

composed of 200,000+ Acoustic Doppler Current Profiler (ADCP) measurements collected at 163 

10,081 USGS stream gauging locations in the United States. From this, we use the recorded 164 

depth, top-width, velocity, and discharge for each campaign.  165 

2.1.2. Data Filtering 166 

With multiple, time-varying observations for the same location, statistical relationships 167 

can describe the relationship between streamflow, depth, top-width, and velocity. These 168 

relationships have traditionally been described using At a station Hydraulic Geometries (AHG; 169 

Leopold & Maddock, 1953; Shen et al., 2016). 170 

The AHG relations are described as: 171 

𝑄 = 𝑇𝑊 ×  𝑌 ×  𝑉 = 𝑎𝑄𝑏  ×  𝑐𝑄𝑓  ×  𝑘𝑄𝑚 = 𝑎𝑐𝑘 ×  𝑄𝑏+𝑓+𝑚      (3) 172 

Where TW is the top-width, Y is the depth, and V is the velocity at a recorded streamflow Q 173 

value. Therefore, individual relationships can be described as follows: 174 

𝑇𝑊 = 𝑎𝑄𝑏            (4) 175 

𝑌 = 𝑐𝑄𝑓            (5) 176 



𝑉 = 𝑘𝑄𝑚            (6) 177 

and by definition: 178 

𝑎 ×  𝑐 ×  𝑘 = 1            (7) 179 

𝑏 + 𝑓 +  𝑚 = 1            (8) 180 

Observations of hydraulic data, particularly over long periods, are inherently noisy. To reduce 181 

this noise, we leveraged the AHGestimation R package (Johnson et al., 2024) Click or tap here to 182 

enter text.which provides the ability to filter data based on statistical outliers prior to using an 183 

ensemble-based fitting method to ensure mass is conserved (Eqs 7-8) and error is minimized. 184 

Profiles were only kept if (1) they were made between 2000-2015 (2) they had a depth less 185 

than 65 m (corresponding to the Hudson River - the deepest river in the United States) (3) they 186 

had a channel top-width of less than 4 km (corresponding to the widest parts of the Mississippi 187 

River) (4) their recorded discharge values are in agreement with min and max NWIS records of 188 

that site (5) no negative discharge, width, depth, and velocity records. Once reduced, any site that 189 

demonstrated an inverse relationship between discharge and depth or had less than 5 profiles 190 

were removed. After filtering each site, AHGestimation was used to fit equations 4, 5, and 6 to 191 

the filtered HYDRoSWOT data. The AHGestimation (Johnson et al., 2024) uses a combination 192 

of ordinary least square, a nonlinear least square, and a genetic algorithm to fit data while 193 

ensuring mass preservation (equations 7 and 8). From these fits we calculate the coefficient of 194 

determination (𝑅2). We took an arbitrary threshold of 0.6 that can explain more than half the 195 

variability in HYDRoSWOT data and retained sites with a 𝑅2 > 0.6 from AHG fit. In total, 196 

4,229 of the 6,226 initial sites were retained. 197 



2.1.3. Bankfull and In-Channel top-width and Depth 198 

To define in-channel and bankfull discharge at the selected HYDRoSWOT sites, we used 199 

the widely accepted definitions of discharge at 100 and 50% annual exceedance probability, 200 

respectively (Andreadis et al., 2013; Rosgen, 1994; Wilkerson, 2008; Woodyer, 1968). While 201 

recognizing that bankfull and in-channel flow vary across river reaches and correlate with 202 

different flood recurrence intervals, we simplify our approach by labeling 100 and 50% annual 203 

exceedance probability as in-channel and bankfull, respectively. We hypothesized that the 100% 204 

annual exceedance probability discharge corresponds to the absence of bathymetry data, wherein 205 

a digital elevation model (DEM) generates a flat bottom unable to penetrate water. Subsequently, 206 

the 50% annual exceedance probability discharge represents the next higher flood condition, a 207 

widely recognized term in the literature concerning the modeling of bankfull width (Andreadis et 208 

al., 2013).  209 

Using historical daily NWIS discharge records (retrieved from DeCicco et al., 2023) at 210 

each HYDRoSWOT site, we computed an annual maxima series and assumed the series may 211 

follow either a generalized extreme value (GEV), generalized Pareto (GP), Log-Pearson Type III 212 

(LP3), or generalized gamma distribution (Metzger et al., 2020; Zhang et al., 2021). To identify 213 

the distribution that best describes the underlying data, the Kolmogorov-Smirnov (KS) method 214 

was used (Ahmad et al., 1988). The selection of the most suitable distribution was determined 215 

through the KS test, which involved computing the KS statistic between the candidate 216 

distribution and the empirical distribution derived from the observed data. Results showed the 217 

majority of sites followed a GEV and GP distribution. Subsequently, the distribution yielding the 218 

smallest KS statistic was identified as the best-fitting model and then used to compute bankfull 219 

and in-channel discharge. The top-width and depth were obtained using the defined AHG 220 



relation. Figure S1 shows several HYDRoSWOT sites with corresponding bankfull and in-221 

channel computed discharges. 222 

The river network used in this study is the National Hydrologic Geospatial Fabric (NHGF; 223 

Bock et al., 2022), which is derived from the NHDPlusV2 with modifications to the topology 224 

and network characteristics based on feedback from a collection of federal agencies (Blodgett et 225 

al., 2023). Using this network, we compiled a list of possible predictors that could be used to 226 

explain variability in channel geometry. A list of all considered predictor variables is included in 227 

Table S1. These variables were selected based on literature and are composed of hydraulic, 228 

hydrologic, and climatological characteristics that affect channel dimensions. 229 

Following the work of Doyle et al. (2023) and Blackburn‐Lynch et al. (2017), we look to 230 

define a suite of catchment and watershed-level characteristics. Like those efforts, we collected a 231 

range of landscape characteristics for all river reaches across the United States using the EPA 232 

StreamCat data set (Hill et al., 2016). This dataset includes information on dams, land use, 233 

climate, hydrology, geology, and more. The outlet features of each total drainage area were 234 

aligned with the reference fabric identifier. In total, we used 58 watershed-level predictors from 235 

this dataset. In addition to these precomputed variables, a set of soil, landscape, and weather data 236 

was obtained and aggregated to the catchment level using climateR (Johnson & Clarke, 2019). 237 

This includes data from TerraClimate (Abatzoglou et al., 2018), POLARIS (Chaney et al., 2019), 238 

NLDAS, GLDAS (Rodell et al., 2004), USGS 3DEP, Leaf Area Index, and the Moderate 239 

Resolution Imaging Spectroradiometer (MODIS) mission. In total, we built 31 predictors from 240 

these sources.  241 

Unlike prior efforts, we wanted to explore the impact of adding network connectivity and 242 

streamflow statistics to our predictors. Hydrographic information was taken from the NHGF, and 243 



in total, 10 predictors were used that represent general catchment and streamflow characteristics 244 

(see Table S1; source: Reference Fabric). 245 

Streamflow statistics were generated for all NHGF reaches from the NWM v2.1 retrospective 246 

simulation (Johnson et al., 2023) and include 20-0.1% annual exceedance probability discharge 247 

(log Pearson Type 3) and the minimum, 25th, 50th, 75th, and maximum flow percentiles. As this 248 

study employed modeled flows, it is essential to note that these are regarded as "synthetic flow 249 

percentiles" due to discrepancies with the gauge measurements. In the training phase, although 250 

all stations contained floods from both NWIS and NWM, we randomly split sites such that half 251 

only contained NWIS bankfull, or in-channel flood, and the other half only contained NWM 252 

bankfull, or in-channel flood, and introduced a binary variable as an indicator of the absence of 253 

NWIS records. This allows the model to predict top-width and depth using accurate NWIS 254 

observations when available and NWM model data otherwise. During the testing phase, bankfull 255 

or in-channel floods are only derived from NWM.  256 

As a first-pass quality check, Figure 1 plots the NWM and NWIS one- and two-year flow 257 

estimates against each other to assess the skill of the NWM in these lower flood recurrence 258 

intervals. While it has been shown that the NWM has less skill in predicting low flows as 259 

opposed to high flows (Fang et al., 2023; Johnson et al., 2023), here we test if the addition of 260 

greater floods as predictors compensates for this. Notably, the two-year flows show nice 261 

agreement (R2 = 0.79) with NWIS, while, as expected, the one-year flows show less (R2 = 0.3).  262 

 263 



 264 

Figure 1. Comparison of NWM and NWIS flood discharges. (a) In-channel or 100% annual 265 

exceedance probability flow comparison; and (b) bankfull or 50% annual exceedance probability 266 

comparison. 267 

2.2. Modeling 268 

We trained four different machine learning models to predict top-width and depth for both 269 

bankfull (50% annual exceedance probability discharge) and in-channel (100% annual 270 

exceedance probability discharge) flow conditions across CONUS. This process is diagrammed 271 

in Figure 2. 272 



 273 

Figure 2. Schematic representation of model training for in-channel and bankfull flow top-width 274 

and depth. 275 

2.2.1. Feature Space Reduction 276 

Given the large predictor set selected for this study (116), we used two approaches to 277 

reduce the number of variables while retaining impactful information. This helps increase model 278 

generalization and interpretability while reducing computational requirements, noise, and 279 



dimensionality (Köppen, 2000). The first involves using SHapely Additive Explanations (SHAP; 280 

Lundberg & Lee, 2017) to quantify individual predictor contributions to the target variable. 281 

SHAP values reveal the contribution of each feature to the disparity between the ML model's 282 

prediction and the baseline prediction (ML model’s average prediction). Positive values signify a 283 

feature contributes to increasing the model's prediction, while negative values denote the 284 

opposite. The magnitude of the SHAP value indicates the strength of the feature's influence. This 285 

process ranks feature importance, and progressively prunes the least significant predictors in a 286 

series of model retraining and validation cycles, and results in the identification of the balance 287 

between complexity and predictive skill. 288 

To address predictor collinearity, we perform correlation analysis following Chan et al. 289 

(2022). We grouped variables based on their correlation and applied Principal Component 290 

Analysis (PCA) to each cluster to create new composite features (Sharma et al., 2015), which we 291 

use as inputs into the model (Figure S2). We specified a target explained variance of 95% to 292 

ensure the retained components collectively account for most of the dataset’s variability while 293 

reducing dimensionality (Cruz-Cárdenas et al., 2014). PCA results across the different categories 294 

and their impact on generated components are shown in supplementary materials (Figures S3-295 

11). We employed the “elbow” heuristic strategy to identify an optimal feature count, which 296 

involves iteratively excluding less informative features while monitoring the coefficient of 297 

determination (R-squared, denoted as ‘𝑅2’) (Liu & Deng, 2020). Upon reaching a plateau in the 298 

𝑅2 value (suggesting the optimal number of features), we identified a subset of 15 features while 299 

the 𝑅2 value remained close to 0.80, signifying these as the most relevant predictors. 300 



2.2.2. Modeling Channel Geometry 301 

The training process involves an out-of-the-box evaluation by training 40 different ML 302 

models, which include neural network, tree-based, and support vector machine approaches to 303 

select top performing models in prediction of top-width and depth as separate models (train on 304 

training data and test on validation data; Figure 2). Then, 𝑅2 and Root Mean Square Error 305 

(RMSE) metrics were used in the objective function to compare the predicted to observed top-306 

width or depth values, and the 10 top-performing models were selected prior to hyperparameter 307 

tuning (see Table S2). The selected models were then fine-tuned using a 5-fold cross-validation 308 

with 3 repeats and a systematic exploration of hyperparameter combinations. Ultimately, four 309 

different ML models were developed for the estimation of top-width and depth under bankfull 310 

and in-channel conditions. 311 

Next, we built a meta-learner and a voting model on the fine-tuned models to harness 312 

collective intelligence. Both the meta-learner and voting model, in this case, use the predictions 313 

of the top 10 fine-tuned selected models, with the exception that a meta-learner has a meta-model 314 

stacked on top to learn from the 10 individual base-level models. These models leverage the 315 

strengths of the top 10 diverse models while minimizing the impact of weaknesses or overfitting 316 

that may occur in any single model. Therefore, we hypothesized that they could be more accurate 317 

than the individual models. 318 

Applying this final step helps capture unique insights from the data, reduces overfitting risk, 319 

and enhances overall model performance by leveraging the strengths of the top ten models. The 320 

entire process is conducted on training (70%) and validation (10%) splits of our datasets, 321 

reserving testing (20%) split only for model performance comparison. During the training and 322 

validation phases, the ML configuration with no data transformation or scaling for both 323 



predictors and target variables yielded the highest 𝑅2. This is consistent with the inherent 324 

properties of tree-based algorithms that are non-parametric and base their decisions on splitting 325 

criteria. However, in the case of neural networks, we identified power transformation and scaling 326 

(among the tested log, power, and quantile transformations) as the most suitable techniques 327 

during training. 328 

Our out-of-box evaluation showed that XGBRegressor, RandomForestRegressor, 329 

HistGradientBoostingRegressor, LGBMRegressor, ElasticNet, MLPRegressor, BayesianRidge, 330 

ARDRegression, KNeighborsRegressor, and BaggingRegressor were often among the top 10 331 

candidates for our ensemble approach. The highest 𝑅2 was obtained through the meta-learner 332 

ensemble method. A comprehensive list of the models tested, and an example of the outputs used 333 

in the selection process are provided in Table S2. Following the completion of model training, 334 

we utilize the reference fabric aggregated features outlined in section 2.1.4 (Channel Predictors) 335 

to predict channel width and depth under both bankfull and in-channel conditions for 336 

approximately 2.7 million river reaches across the CONUS. 337 

2.3. Hydrological Traits Impact on Channel Geometry 338 

We delve deeper into the impact of features on model performance by examining the top 339 

predictors identified through feature importance analysis. This involves categorizing the values 340 

of significant features into quartiles and assessing the model's skill (𝑅2) in predicting channel 341 

geometry, including channel width and depth under both in-channel and bankfull conditions. By 342 

doing so, we aim to uncover any potential biases of the model towards favoring certain 343 

hydrological characteristics. 344 

To assess the impact of varying magnitudes of predictor variables on channel geometry, we 345 

categorized sites based on influential predictors into four quantile ranges: 0-25%, 25-50%, 50-346 



75%, and 75-100% for each predictor. Subsequently, we evaluated how the model's skill (𝑅2) 347 

evolves across these quantile ranges, thereby revealing any potential modeling bias towards 348 

specific predictor variables. The presence of discernible patterns in model performance (such as 349 

positive or negative trends from lower to higher quartiles) indicates potential bias in certain river 350 

segments towards either high or low values of the respective attribute. We restricted our analysis 351 

to the four most influential variables identified by SHAP. 352 

We utilize SHAP values to comprehend how crucial features influence model outputs (i.e., 353 

channel width and depth). This involves plotting the SHAP value of a feature against its value 354 

for all examples in the dataset. By doing so, we illustrate how predicted channel dimensions 355 

change as the feature of interest varies, offering insight into complex interactions. This approach 356 

may uncover feature (hydrological) thresholds that influence the model's estimation of channel 357 

depth and width, deviating from simple monotonic relationships between feature values and 358 

channel dimensions. Instead of consistently increasing or decreasing with changes in feature 359 

values, these thresholds may lead to instances where certain increases in feature values result in a 360 

reversal of the model's predicted behavior. 361 

2.4. Literature Comparisons 362 

Here, we compare the performance of our proposed ML models to other modeling efforts 363 

documented in the literature. The goodness-of-fit metrics employed to compare the proposed 364 

machine learning model with existing literature include the 𝑅2 coefficient (permitting direct 365 

comparison to previous studies), Kling–Gupta efficiency (KGE), and the normalized root mean 366 

square error (NRMSE). We compare our results to that of Blackburn‐Lynch et al. (2017), which 367 

introduced regional relations between discharge and channel top-width and depth based on 368 



hydrologic landscape regions (HLR; Figure S12; Wolock et al., 2004) and physiographic 369 

provinces. We took the reported 𝑅2 values from Blackburn‐Lynch et al. (2017) and juxtaposed 370 

them with those predicted by our ML approach across all test sites, grouped in individual HLR 371 

and Physiographic provinces.  372 

Further we compare our model skill to that of global equations founded on drainage area 373 

and discharge, as introduced by Frasson et al. (2019) and Andreadis et al. (2013), respectively. 374 

To facilitate this comparison, we applied these equations to our HYDRoSWOT dataset, using the 375 

total upstream catchment area along with 100 and 50% annual exceedance probability discharge 376 

as input. We also compare our predictions to the recently developed ML method of Doyle et al. 377 

(2023), where we extracted the predicted top-width from their study using the values that are 378 

published in StreamCat data (Hill et al., 2016). Next, we aligned the stream segment IDs 379 

(COMIDs) from their dataset with ours to ensure consistency in comparing stream segments. 380 

Subsequently, we evaluated our predictions of channel top-widths and depths alongside those of 381 

Doyle et al. (2023)   against the observed HYDRoSWOT data. 382 

3. Results 383 

3.1. In-channel and Bankfull Model Performance 384 

For channel top-width, the model 𝑅2 was approximately 0.82 for bankfull and in-channel 385 

conditions, and for channel depth, the model 𝑅2 was approximately 0.80 (Figure 3). 386 

Figure 3 shows the performance of all four models on unseen test data. The top-width 387 

models are slightly more accurate (in terms of 𝑅2) than the depth models, a trend that is 388 

consistent with previous studies (Booker & Dunbar, 2008). In general, the models underpredict 389 



both top-width and depth as channel top-width and depth increase (scatter dots located on the 390 

right side of the 1:1 line in Figure 3. c-f). This observation can be attributed to the skewed nature 391 

of hydrologic observations, with proportionately fewer data points collected from larger channels 392 

(in HYDRoSWOT), resulting in less training data for the machine learning model (Krawczyk, 393 

2016). 394 

 395 

Figure 3. Predicted bankfull depth and top-width for all used stations in HYDRoSWOT data 396 

mapped to reference fabric flowlines using stream segment IDs (COMID). using meta-learner 397 

(subplots a and b, respectively). Subplots c and d represent the meta-learner channel depth GOF 398 

for in-channel and bankfull flow conditions. Subplots e and f represent the meta-learner channel 399 

top-width GOF for in-channel and bankfull flow conditions. 400 



3.2. Impactful Predictors 401 

Figure 4 shows the significant features for the prediction of bankfull channel top-width 402 

and depth. It visualizes the SHAP values of each feature across all samples (dots on the plot). It 403 

also arranges features based on the cumulative sum of SHAP value magnitudes across all 404 

samples, and utilizes SHAP values to illustrate the distribution of each feature's impact on the 405 

model output. The most influential feature identified is bankfull discharge and the 0th flood 406 

frequency principal component (Figure 4; NWM Flood pc 0). Focusing on top-width (Figure 4a), 407 

the most pivotal variables are the cumulative lengths of all upstream flowlines (Arbolatesu), the 408 

topological wetness index (TWI), and actual evapotranspiration (AET). All three variables 409 

exhibit a positive relationship with channel top-width, as indicated by SHAP importance values.  410 

Concerning the feature importance of the depth prediction (Figure 4b), the most 411 

influential variables include bankfull flow estimates, mean catchment elevation, channel slope 412 

(Slope), and the base flow index. Upon comparing the distinctions between the two, it's evident 413 

that channel depth is influenced by topographical factors (elevation and slope), groundwater 414 

recharge (base flow index), and soil texture. Conversely, channel width is influenced by 415 

cumulative stream lengths (Arbolatesu), catchment area (Totdasqkm), TWI, and precipitation. 416 



 417 

Figure 4. SHAP features importance values, distribution, and impact on model prediction for 418 

bankfull top-width (a) and depth (b). All NWM Flood principal components (PCs) are 419 

uncorrelated representations (PCs are orthogonal to each other) of 20-0.1% annual exceedance 420 

probability discharge. Human PC2 is a representation of the total reservoir volume in the 421 

catchment. Soil PC0 represents soil moisture, Soil PC1 represents % of clay and silt, and Soil 422 

PC2 represents % of sand. 423 

3.3. Impact of Predictors Magnitude on Model Performance 424 

Next, we examined the four most influential features in each model by partitioning their 425 

values into quartiles, allowing us to assess model performance across segments as shown in 426 

Figure 5. In the case of channel top-width, both bankfull discharge and the flood frequency PC0 427 

show similar patterns when assessing model performance (Figure 5a, b), showing that as channel 428 

top-width increases, modeling errors decrease. A pattern was also found in the arbolate sum 429 

(Arbolatesu; Figure 5c). The topographic wetness index (TWI; Figure 5d) values do not appear 430 

to have a strong pattern between quartiles and performance. 431 



Looking at the depth model in Figure 5e, we see that as the channel slope decreases, 432 

model GOF (𝑅2) increases. Model performance declines when bankfull discharge is smaller 433 

(Figure 5f). Higher elevations (Figure 5g) also tend to negatively impact model GOF (𝑅2), and 434 

the model showcases its highest performance in regions dominated by runoff rather than 435 

groundwater contributions (baseflow index; Figure 5h).  436 

 437 

Figure 5. ML model performance across different quantiles of the most influential variables for 438 

both depth and width models. Within each subplot each dot represents a station belonging to a 439 

quantile of an important feature a, b, c, and d belong to grouped performances of top-width and 440 

subplots e, f, g, and h belong to depth. Th model skill (𝑅2) is shown as cyan plus sign.  441 

3.4. Hydrological thresholds 442 

It has been theorized that channel geometry follows stable hydrologic regimes (Rosgen, 443 

1994). To elucidate this, we investigate the interrelation between key variables and their 444 

respective influence on model prediction, as depicted in Figure 6. In Figure 6a, the significance 445 

of the Topographic Wetness Index (TWI) in forecasting channel top-width is quantified. The 446 



absolute magnitude of the SHAP value serves as an indicator of the importance of each site (dots 447 

on the plot) in machine learning. A positive SHAP value suggests an increase in channel 448 

dimension, while a negative value indicates the opposite. The illustration reveals that channels 449 

with elevated bankfull discharge (depicted by purple dots) exhibit particularly informative data, 450 

characterized by high positive or negative SHAP values, during the machine learning model's 451 

training phase. Interestingly, there is an inflection point near TWI = 810. Here, high discharges 452 

(pink dots) linked with TWI < 810 result in a decrease in channel top-width (indicated by 453 

negative SHAP values), while values above TWI > 810 correspond to an increase in channel top-454 

width. This is also observed when looking at bankfull discharge high (purple) and low (blue) 455 

values, as higher discharge values do not linearly contribute to greater channel dimensions. This 456 

suggests that channel morphology shifts after TWI = 810 and is most evident in larger channels 457 

(or higher discharge/pink dots). Similarly, an inflection point of AET = 65, as shown in Figure 458 

6b, illustrates that areas characterized by AET < 65 contribute to shallower channels, and AET 459 

greater than this threshold is an indicator of deeper channels. The soil PC2, which is a 460 

representative of clay and silt components (see supplementary materials in Figure S3), is evenly 461 

scattered and shows no pattern.  462 

 463 



Figure 6. Representation of the contribution of each important feature and its inner correlation 464 

and impact on the top-width and depth models. (a) represents the impact of the topological 465 

wetness index on the channel top-width ML model and its correlation with the NWM 50% 466 

annual exceedance probability discharge. (b) represents the impact of AET on the channel depth 467 

ML model and its correlation with % of soil clay and silt content.  468 

3.5. Performance in Hydrologic Landscape Regions 469 

. It reveals a pattern where channel depth models show lower GOF (𝑅2) in the prediction 470 

of bankfull depth in regions with impermeable bedrock (HLR 16, 17, 18, and 19; Carlier et al., 471 

2018; Santhi et al., 2008). Figures 7b and c show that the GOF of regional drainage area-based 472 

equations provided by Blackburn‐Lynch et al. (2017) over the CONUS is poor (𝑅2 ~ 0.2-0.3). 473 

We took the reported 𝑅2 values from Blackburn‐Lynch et al. (2017) and compared it to the one 474 

predicted by the proposed ML approach in Figures 7d and e. Figures 7d and e, highlight the 475 

potential correlation between model performance, the distribution of the target variable, and the 476 

quantity of available points for machine learning. Results showed that the proposed depth model 477 

shows a significant improvement in 𝑅2 across all HLR and physiographic provinces (see 478 

supplementary Figure S13; except for physiographic provinces 1 (Adirondack) and 23 (Southern 479 

Rocky Mountains)). In hydrological regions, HLR 16, characterized as humid mountains with 480 

permeable soils and impermeable bedrock, the ML model did not show improved GOF 481 

compared to the Blackburn‐Lynch et al. (2017) study (𝑅2≅0.60 of our model vs. 𝑅2≅0.62 482 

reported). Moreover, regions with impermeable bedrock have lower range of measured channel 483 

depths (HYDRoSWOT measurements; as depicted in Figure 7d). Furthermore, we provide the 484 



improvements of ML-based approaches over discharge-based regional equations by Bieger et al. 485 

(2015) in supplementary information (Figure S13). 486 

 487 

Figure 7. Depth ML model GOF (𝑅2) comparison with literature and across hydrologic 488 

landscape regions (a). (b) the GOF (𝑅2) of Blackburn‐Lynch et al. (2017) derived depth from 489 

NWIS bankfull depth measurements. (c) GOF (𝑅2) of Blackburn‐Lynch et al. (2017) derived 490 

depth from NWIS in-channel depth measurements. (d) shows the population of sites and 491 

distribution of depth per HLR in HYDRoSWOT. (e) proposed ML model GOF (𝑅2) comparison 492 



(in columns) to Blackburn‐Lynch et al. (2017) (in black dots) across hydrologic landscape 493 

regions.  494 

Performing the same operations for the top-width ML model (Figure 8a) and comparing model 495 

skill (𝑅2) to Blackburn‐Lynch et al. (2017) (Figure 8b and c), we see an overall higher 𝑅2 496 

performance in the tested ML model (Figure 8d and e and Figure S14). Looking at HLRs, we see 497 

that the lowest GOF comes from region 19, which is described as very humid mountains with 498 

permeable soils and impermeable bedrock with 𝑅2≅0.75. The highest GOF based on 𝑅2are seen 499 

in all plains (HLR 1-8) and plateau regions (i.e., HLR 9-13; Vidon & Hill, 2004). All these 500 

plateaus are categorized as surface flow response (in contrast to groundwater flow response) 501 

regions (Wolock et al., 2004). On the other hand, the mountainous regions in HLR 16-19 have 502 

the lowest GOF (in terms of 𝑅2). Compared to depth estimates, the drainage area-based 503 

equations by Blackburn‐Lynch et al. (2017) have a better skill in the prediction of top-width 504 

under in-channel conditions (Figure 8c; 𝑅2 ~ 0.5) but are not appropriate for bankfull flows 505 

(Figure 8c; 𝑅2 ~ 0.2). 506 



 507 

Figure 8. Width ML model GOF (𝑅2) comparison with literature and across hydrologic 508 

landscape regions (a). (b) the GOF (𝑅2) of Blackburn‐Lynch et al. (2017) derived width from 509 

NWIS bankfull width measurements. (c) GOF (𝑅2) of Blackburn‐Lynch et al. (2017) derived 510 

width from NWIS in-channel width measurements. (d) shows the population of sites and 511 

distribution of width per HLR in HYDRoSWOT (e) proposed ML model GOF (𝑅2) comparison 512 

(in columns) to Blackburn‐Lynch et al. (2017) (in black dots) across hydrologic landscape 513 

regions.  514 



3.6. Comparative Model Assessment 515 

Following the substantial enhancement in performance when compared to regionally 516 

based discharge equations, we compare our results to global discharge and drainage area based 517 

questions and recent ML model by Doyle et al. (2023). Figure 9. shows the comparison of the 518 

global models and the recently proposed ML-based approaches, where ML models show a clear 519 

superiority over global relations.  520 

 521 

Figure 9. Channel top-width at bankfull and in-channel flow conditions model performance 522 

comparison between (a, e) global drainage area-based equations, (b, f) global discharge-based 523 

equations, (c, g) the ML model proposed by Doyle et al. (2023), and (d, h) our proposed model. 524 

Using the same process, we can derive and compare our proposed depth model to other 525 

models in the literature (Figure 10).  526 



 527 

Figure 10. Channel depth at bankfull and in-channel flow conditions model performance 528 

comparison between (a, e) global drainage area-based equations, (b, f) global discharge-based 529 

equations, (c, g) the ML model proposed by Doyle et al. (2023), and (d, h) our proposed model. 530 

With improved representation of discharge characteristics (from NWM), the proposed 531 

ML model has higher GOF (in terms of 𝑅2) compared to its predecessors.  532 

4. Discussion 533 

4.1. Significance of Discharge in Channel Geometry Modeling 534 

The outcomes of the SHAP features importance analysis suggest that the machine 535 

learning models have effectively captured the variations in channel dimensions while preserving 536 



the faithful representation of diverse hydrological and hydraulic processes and their 537 

interrelations. Conventional methods often employ empirical equations that relate these 538 

dimensions to drainage areas (Dunne & Leopold, 1978). More recent studies have focused on the 539 

application of bankfull discharge rather than drainage areas for developing channel dimension 540 

relations (Bieger et al., 2015). In Figure 6a we saw a nonlinear relationship between bankfull 541 

discharge/TWI and channel dimensionality. This non-linear relation was also reported by 542 

Erikson et al. (2024) recent study that showed regions exhibiting non-linear discharge scaling, 543 

bankfull channel dimensions increase more rapidly with drainage area compared to areas with 544 

linear discharge scaling. This suggests that the recurrence interval of the characteristic discharge 545 

determining channel geometry may be greater in regions with non-linear discharge scaling than 546 

in those with linear scaling. 547 

We found the most influential feature identified for both depth and width is bankfull/in-548 

channel discharge and is aligns well with the feature importance analysis conducted by Doyle et 549 

al. (2023) for wetted top-width and thalweg depth, as well as studies where authors employed in-550 

situ measurements to establish relationships between discharge and channel characteristics using 551 

satellite imagery (Bjerklie, 2007; Bjerklie et al., 2005; Zakharova et al., 2020). Our findings 552 

underscore the significant role of using 50% annual exceedance probability discharge derived 553 

from NWM retrospective data when NWIS-derived 50% annual exceedance probability 554 

discharge is unavailable (the most important predictor shown Figure 4). The usage significantly 555 

enhances the GOF of prediction of channel top-width and depth, as indicated by the increase in 556 

𝑅2 value. It consistently (in width and depth under both flow conditions) demonstrates a strong 557 

positive correlation between higher magnitudes of the flood (Bankfull discharge and NWM 558 



Flood PCs), and broader, deeper channels, aligning with the established literature (Bjerklie et al., 559 

2005; Brown & Pasternack, 2014; Wohl & Wilcox, 2005). 560 

Interestingly, global equations based on drainage area show significantly lower GOF 561 

(𝑅2), while methods grounded in discharge demonstrate notably higher levels of GOF. However, 562 

the use of hydraulic geometry curves does require a comprehensive understanding of the 563 

bankfull or in-channel discharge at specific locations of interest. To overcome this issue, Doyle 564 

et al. (2023) used the mean runoff from RunoffWs (StreamCat data; McCabe & Wolock, 2011) 565 

that is generated based on a 4 km × 4 km water-balance model for a period of 1900–2008. We 566 

improved upon this by replacing the water balance model with more accurate NWM 567 

retrospective data and derived various discharge characteristics by computing discharges of 20-568 

0.1% annual exceedance probability and long-term average flow percentiles from NWM v2.1 569 

historical archives (Michael et al., 2023). Lin et al. (2020) also identified discharge as the 570 

primary significant characteristic both in bankfull top-width and depth estimations. However, 571 

Doyle et al. (2023) identified the watershed area as the primary significant feature for their 572 

models in feature importance analysis. Contrarily, in our study, we demonstrated that a more 573 

accurate discharge from NWM (compared to Doyle et al.’s (2023) water balance model) can 574 

result in higher model GOF and the identification of discharge as the primary significant feature.  575 

4.2. Other influential variables in Channel Geometry Modeling 576 

Other most influential variables for the modeled depth were identified to be channel slope 577 

(Slope), mean catchment elevation (also reported by Lin et al. (2020) as the third important 578 

variable), and the base flow index. All these variables demonstrate a negative relationship with 579 

channel depth, suggesting that regions characterized by lower elevations and mild slopes (e.g., 580 



coastal areas) combined with lower groundwater to runoff contribution (low BFICat values) 581 

favor deeper channels (Biswal et al., 2023; Harman et al., 2008). These insights contribute to a 582 

comprehensive understanding of the multifaceted relationships between the examined features 583 

and channel dimensions (Morel et al., 2020). 584 

In the case of width models, other influential variables were namely Arbolatesu, TWI, 585 

and AET that showed a positive relationship with channel top-width, as indicated by SHAP 586 

importance values. Practically, this can be interpreted to mean that regions with a high 587 

Topological Wetness Index, higher vegetation density and coverage (AET), or extended 588 

upstream drainage area tend to possess broader channels. 589 

4.3. Utility and Limitations 590 

The utility of bankfull top-width and depth estimates is evidenced in a broad body of 591 

literature and their application in large-scale modeling (such as the National Water Model) and 592 

observation (such as the Surface Water and Ocean Topography (SWOT) mission). Across the 593 

hydrological and hydraulic sciences, these estimates serve applications across studies 594 

encompassing research, engineering, modeling, and mapping applications. As model domains 595 

and resolutions expand, the capability to precisely estimate these attributes within high-596 

resolution and dynamic hydrographic networks is becoming more important and useful 597 

(Archfield et al., 2015; Wood et al., 2011). Despite advancements in remote sensing applications 598 

for monitoring, the current resolution do not yet align with the necessary level of detail. Hence, 599 

there persists a demand for modeling and estimating these characteristics across diverse and 600 

heterogeneous landscapes. 601 



To date, there have been efforts to generalize these relationships with respect to 602 

hydrographic (drainage area) and landscape (StreamCat) traits. These efforts encompass global 603 

and regional regression models, along with the application of random forest techniques across an 604 

extensive array of predictor variables at the catchment level. In this work, we aimed to enhance 605 

prior approaches by introducing two distinctive augmentations.  606 

The initial addition was to incorporate comprehensive hydrographic details and historical 607 

streamflow model simulations from NWM aggregated based on reference fabric apart from other 608 

landscape attributes and drainage area. This establishes a dynamic, updatable channel geometry 609 

dataset for United States reference flow (Blodgett et al., 2023), notably applied in numerous 610 

integrated federal modeling initiatives. Consequently, our findings underscored elevation, slope, 611 

arbolate sum (Arbolatesu), drainage area, and length as pivotal predictors in estimating in-612 

channel and bankfull flow conditions. The aggregation scale of these predictors emphasizes the 613 

potentially apparent yet significant role of network configuration in shaping bankfull flow 614 

conditions. Moreover, the incorporation of streamflow statistics derived from a comprehensive 615 

hydrologic model (National Water Model 2.1) demonstrated notable predictive power in 616 

establishing bankfull conditions. While Figure 1 highlights the level of agreement between the 617 

one-year (𝑅2 = 0.3) and two-year (𝑅2 = 0.79) flow conditions with the observed record, it is 618 

evident that the patterns in the data were able to help the ML model deduce more accurate 619 

estimates (based on 𝑅2) across the entire network. 620 

The subsequent addition to this research was to introduce a more robust ML method to 621 

address this challenge. We minimized the complexity of the model by retaining only the most 622 

impactful predictors. This process helped reduce the number of model predictors from 116 to 15. 623 

This represents a major improvement over previous efforts such as Doyle et al. (2023), who 624 



performed a similar test but concluded with 96 predictors, many of which exhibit high 625 

collinearity. Also, diligent attempts were undertaken to minimize data covariance and refine the 626 

input parameter space. A comprehensive evaluation encompassed a broad spectrum of "out-of-627 

the-box" (40) and fine-tuned models (10), culminating in the development of a meta-learner 628 

model that harnessed the expertise and diversity of the collective models. These efforts yielded 629 

four models that exhibited enhanced predictive capabilities compared to existing methodologies. 630 

Beyond model development, this approach was applied to the entire NHGF network, resulting in 631 

outcomes integrated into the core data product. This integration actively improves data, making 632 

it more findable, accessible, interoperable, and reusable within the expanding hydrologic science 633 

data system. 634 

Despite the numerous advantages, certain limitations warrant consideration. One 635 

limitation is the training data and its general applicability, which are constrained to USGS sites 636 

only. These sites are often situated in locations with high banks that confine the flow for ease of 637 

measurement and, as such, may not precisely represent the geometry of the entire reach. Also in 638 

estuaries, particularly near the river mouth where it widens into the coastal zone, there are no 639 

recorded ADCP measurements in HYDRoSWOT, and model accuracy is unreliable. This 640 

limitation in training dataset also result in unreliable estimates near manmade structures (e.g., 641 

dams and ponds). Another limitation stems from the primary significant feature of ML models, 642 

or the 100% annual exceedance probability discharge derived from the NWM, where the NWM 643 

diminished skill (as shown in Figure 1) in this exceedance probability, impacting the overall 644 

model GOF. While this method offers consistent reach-averaged channel geometry data for the 645 

entire CONUS, its resolution is constrained to the reach scale. The consequences of averaged 646 

reach-scale resolution can vary depending on the application. On one hand, it may lead to 647 



limitations such as overlooking intricate channel features like braiding, incision, and aggradation. 648 

On the other hand, it can offer benefits such as simplifying complexity and reducing 649 

computational efforts and can be fused with DEM derived products to represent the entire river 650 

reach. Achieving a resolution lower than reach scale would necessitate the utilization of satellite 651 

imagery for accurate width estimation. However, even with satellite imagery, resolving depth 652 

accurately at resolutions lower than reach scale remains a challenge in the absence of 653 

bathymetric related information. 654 

 Moreover, although our modeling strategy effectively reduced 112 variables into 15 655 

components, the reliance on source data restricts the scalability of this approach to different 656 

geographical locations. Substantial data challenges associated with using existing NWM 657 

retrospective data (Johnson J. Michael et al., 2023) and its sheer size currently make this dataset 658 

globally unavailable, although less accurate global hydrological models can be substituted. 659 

Consequently, our model's applicability could be constrained in global regions where a 660 

comprehensive long-term historic modeled record is unavailable. The ML modeling method’s 661 

applicability extends beyond a singular regression relation, thereby potentially posing challenges 662 

in its adaptation to new networks due to the complexity of the parameter set and model 663 

deployment. Nonetheless, envisioning future applications within the United States, the 664 

comprehensive coverage across our domain, coupled with the seamless integration into the 665 

continually evolving data system, holds significant promise for advancing the evolution and 666 

dissemination of hydrofabric data. 667 

Anticipating advancements within the United States Next Generation Water Resource 668 

Model initiative led by NOAA and Cooperative Institute for Research to Operations in 669 

Hydrology (CIROH), the availability of this information will certainly help many ongoing 670 



efforts. Notably, the team spearheading the development of routing infrastructure for the 671 

NextGen system relies on approximations of general and natural cross-sectional data to facilitate 672 

Muskingum-Cunge and Diffusive Wave routing methods. The first of these can be improved or 673 

derived from a quality estimate of bankfull top-width and depth using existing methods like 674 

those in WRF-hydro or other channel geometry estimators (e.g., parabolic forms such as in 675 

Dingman, 2009). Additionally, the Flood Inundation Mapping team can incorporate estimated 676 

depths into their synthetic rating curve workflow (Johnson et al., 2019; Zheng et al., 2018), 677 

addressing the current limitations in accounting for bathymetry within DEM-derived hydraulic 678 

states. The inclusion of an estimated bankfull depth can help better estimate the volume of water 679 

in the channel and reduce instances of systematic over- or under-prediction (Johnson et al., 680 

2019). While the effectiveness of these diverse use cases awaits validation, their accessibility 681 

through fundamental geospatial products supporting USGS, NOAA, and CIROH efforts will 682 

facilitate simplified testing and evaluation processes. 683 

5. Conclusions  684 

The measurements of channel top-width and depth, as well as their ratio, particularly at 685 

bankfull flow conditions, play a pivotal role in the fields of hydrology and river science 686 

(Bjerklie, 2007). These metrics hold profound importance for several key reasons. First and 687 

foremost, they are fundamental to characterizing the physical attributes and morphology of river 688 

systems, providing critical insights into the geometry of channels. (Luo et al., 2007) 689 

Also, NASA's Surface Water and Ocean Topography (SWOT; Biancamaria et al., 2016) 690 

mission objectives, which encompass the precise measurement of channel discharge, water 691 

surface elevation, and variations in channel dimensions, rely on the calibration and validation of 692 



its remote sensing instruments, and the proposed method could play a pivotal role in ensuring the 693 

mission's accuracy and its valuable contributions to our comprehension of Earth's surface water 694 

dynamics. In smaller rivers and tributaries, estimating channel dimensions presents a 695 

considerable challenge, primarily due to the restricted spatial resolution of satellite data. 696 

Nonetheless, as showcased in this study, ML approaches trained on hydrographic information 697 

and model simulated discharge values provide an alternative method to adequately capture 698 

channel dimensions. 699 

Our study showcases the efficacy of the current ensemble ML model in minimizing the 700 

necessary predictors while mitigating concerns related to multicollinearity and model confusion. 701 

Leveraging the extensive dataset of NOAA’s Office of Water Prediction’s (OWP) NWM flow 702 

characteristics encompassing 2.7 million reaches, we have achieved notably high GOF (reported 703 

as R2) in predicting bankfull depth and top-width. Nonetheless, it is pertinent to acknowledge 704 

that the model's GOF diminishes with reduced discharge levels. This result again points to the 705 

challenge of getting equal skill in large and small segments of the network. This pronounced 706 

effect in smaller rivers and tributaries suggests a potential association with NWM’s limited skill 707 

in representing base flow, a key determinant of channel dimension within ML models (as shown 708 

in Figure 5, there is a correlation between lower discharge and reduced model GOF). Certain 709 

constraints include the exclusive use of training data from USGS sites, primarily situated in areas 710 

with elevated banks, restricting flow and potentially not faithfully representing the complete 711 

reach geometry. We conducted extensive model evaluations across different hydrologic 712 

landscape regions and physiographic provinces and divisions. Our comprehensive analysis 713 

substantiates the capacity of our approach to augment the existing models documented in 714 

scientific literature.  715 
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